919NBA直播 PRODUCTS CENTER
技术文章您现在的位置:首页 > 技术文章 > 介绍粒子计数器种类及原理

介绍粒子计数器种类及原理

更新时间:2015-12-28   点击次数:1665次
当折射率变化时,光线就会发生散射。这就意味着在液体中,汽泡对光线的散射作用和固体粒子是一样的。米氏理论描述了粒子对光的散射作用。
光的散射情况会随着粒子尺寸的变化而变化。在粒子计数器中,米氏理论zui重要的结果以及它对光散射的预测都与之相关。当粒子尺寸比光的波长要小得多的时候,光散射主要是朝着正前方。而当粒子尺寸比光波长要大得多的时候,光散射则主要朝直角和后方方向散射。
光可以看做是沿着传播方向进行垂直振荡的波。这一振荡方向就是所谓的偏振。入射光的偏振非常重要。在以前的例子里,光的散射是在入射光的偏振平面内进行测量的。
粒子尺寸在5μm时的散射情况类似;而具有偏振现象,粒子尺寸在0.3μm时的散射情况有很大不同。由于用对数表示,变化不到十倍的,都看不到散射光的强度随着频率的改变而变化:较短的波长意味较强的散射。在其他条件都相同的情况下,蓝光的散射强度大约是红光的10倍。大部分粒子计数器采用的都是近红外或红色激光;直到zui近,这还都是zui符合经济效益的选择。蓝色气体和半导体激光器价格都很贵;而且半导体激光器的使用寿命也很短。
空气粒子计数器
在传感器的出口处有一个真空装置,把空气经过传感器抽走。而空气中的粒子则将激光散射。散射光又会被后面的聚光镜聚焦到光学探测器上,随后把光转换成电压信号,并且进行放大和滤波。此后,这个信号从模拟的转换成数字信号,并且由微处理器对它进行分类。微处理器会通过接口将计数器连接到控制数据收集系统上。
激光粒子计数器
气体激光器发明于1960年,而半导体激光器发明于1962年。开始时这些激光器很贵,但是随着它们变成具有经济效益时,在粒子计数器中,就用气体激光取代了白光。而到了20世纪80年代末,在绝大多数场合下,更便宜的半导体激光器又取代了气体激光器。
用于粒子计数的激光器有两种:一种是气体激光器,如氦氖(HeNe)激光器和氩离子(arg-ion)激光器;另外就是半导体激光器。气体激光器能够生产强烈的单色光,有时甚至是偏振光。气体激光器产生准直高斯光束,而半导体激光器则产生出一个小的发散点光源,通常发散光有两个不同的轴,并且总是出现多种模式。由于发散光具有多轴性,半导体激光器通常都有一个椭圆形的输出,这带来了一定的挑战,也带来了一定的优势。不同轴的散射光意味着要么勉强接受这一椭圆形的输出,要么设计一套复杂而昂贵的光学镜来做补偿。另一方面,椭圆光束很适合用于某些应用,利用长轴,可以得到更好的覆盖范围。
总之,氦氖激光器的输出“直接可用,无需增加任何光学元件。要想产生类似于氦氖激光器的光束,从半导体激光器出来的光必须经过透镜聚焦,这会导致光能的损耗。但是,半导体激光器的成本低、体积小、工作电压低、功耗小,成为粒子计数器的*选择。
在要求高灵敏度的应用中,氦氖激光器可以用于开式腔模式,产生很大的功率。因为样本要通过光学空腔谐振器,当粒子浓度较高时,激光会中断(无法维持“Q因子),所以此时这种类型的激光不适用。
Baidu
map